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ABSTRACT

For robots with joint elasticity, discrepancies exist between

the motor side information and the load side (i.e., end-effector)

information. Therefore, high tracking performance at the load

side can hardly be achieved when the estimate of load side infor-

mation is inaccurate. To minimize such inaccuracies, it is desired

to calibrate the load side sensor (in particular, the exact sensor

location). In practice, the optimal placement of the load side sen-

sor often varies due to the task variation necessitating frequent

sensor calibrations. This frequent calibration need requires sig-

nificant effort and hence is not preferable for industries which

have relatively short product cycles. To solve this problem, this

paper presents a sensor frame identification algorithm to auto-

mate this calibration process for the load side sensor, in partic-

ular the accelerometer. We formulate the calibration problem as

a nonlinear estimation problem with unknown parameters. The

Expectation-Maximization algorithm is utilized to decouple the

state estimation and the parameter estimation into two separated

optimization problems. An overall dual-phase learning structure

associated with the proposed approach is also studied. Experi-

ments are designed to validate the effectiveness of the proposed

algorithm.

NOMENCLATURE

ql Load side position ∈ R
n

q̇m Motor side position ∈ R
n

q̇l Load side velocity ∈ R
n
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q̇m Motor side velocity ∈ R
n

q̈l Load side acceleration ∈ R
n

q̈m Motor side acceleration ∈ R
n

Ml(ql) Load side inertia matrix ∈ R
n×n

Mm Motor side inertia matrix (diagonal) ∈ R
n×n

Mn Nominal Load side inertia matrix (diagonal) ∈ R
n×n

C(ql , q̇l) Coriolis and centrifugal force matrix ∈ R
n×n

N Gear ratio matrix (diagonal) ∈ R
n×n

G(ql) Gravity vector ∈ R
n

Dl Load side damping matrix (diagonal) ∈ R
n×n

Dm Motor side damping matrix (diagonal) ∈ R
n×n

DJ Joint damping matrix (diagonal) ∈ R
n×n

KJ Joint stiffness matrix (diagonal) ∈ R
n×n

τm Motor torque input ∈ R
n

fm(q̇m) Friction effect on motor side ∈ R
n

fl(q̇l) Friction effect on load side ∈ R
n

fext External force acting on end-effector ∈ R
6

dm Motor side fictitious disturbance torque ∈ R
n

dl Load side fictitious disturbance torque ∈ R
n

al Translational acceleration ∈ R
3

al,s Measurement of translational acceleration ∈ R
3

qm,s Measurement of motor side position ∈ R
n

Ri−1
i Rotation matrix describing the frame {i} relative to

the frame {i−1} ∈ R
3×3

J̄s(ql ;ξs) The first three rows of the Jacobian matrix mapping

from the load side joint space to the sensor frame

Cartesian space ∈ R
3×n

¯̇Js(ql ;ξs) Derivative of the first three rows of the Jacobian

matrix Js(ql ;ξs) ∈ R
3×n

J(ql) Jacobian matrix mapping from the load side joint

space to the end-effector Cartesian space ∈ R
6×n



nm Measurement noise of motor-side encoder ∈ R
n

na Measurement noise of accelerometer ∈ R
3

nw Processes noise ∈ R
n

ql,s Measurement of load side position ∈ R
n

INTRODUCTION

For industrial robots with indirect drive mechanisms (e.g.,

gear transmissions), the load side encoder is often not available

due to the cost and assembly issues. Using motor side encoder

signals for feedback control, however, may not guarantee satis-

factory control performance at the load side due to the robot joint

dynamics. To overcome this problem, it has been suggested to

attach a low-cost MEMS accelerometer at the robot end-effector

to measure the translational acceleration [1–3]. Then, the ac-

celerometer measurements are incorporated with the motor en-

coder signals to obtain an estimate of the end-effector position

and/or velocity. Although these methods have successfully im-

proved the load side tracking performance [4], there still remain

various practical issues when applying these techniques to in-

dustrial robot systems. For example, the accelerometer location

must be precisely known, but manually calibrating the sensor lo-

cation requires a long period of time. Thus, the sensor based

estimation scheme is difficult for industrial applications which

involve frequent changes of sensor location due to task varia-

tions. More specifically, the load side accelerometer is manually

mounted at the location which requires the most attention for per-

formance improvement. Such locations may change from one

task to another due to task variations. The accelerometer may

be mounted magnetically to the robot end-effector so that the ac-

celerometer location can be changed easily. In such situation,

the sensor frame location needs to be identified every time when

the sensor moves to a new location. A standard sensor frame

calibration method [5] is to command the robot to move such

that the designated sensor location touches a reference point with

different postures. Then, the sensor frame location can be com-

puted using the robot posture information and the corresponding

accelerometer measurements. This calibration process requires

significant effort. Therefore, developing an algorithm that can

automatically detect the accelerometer’s mounting position and

orientation becomes an important issue.

In this work, we aim to design an algorithm which deals with

the load side sensor frame identification problem using only ac-

celerometer and motor encoder measurements over a designed

trajectory. The main difficulty of this problem is that the un-

known system parameters (i.e., the sensor frame location) have

complex dependencies on the immeasurable system states (i.e.,

the load side information). Such problem is usually referred

to as the “parameter estimation using incomplete data” prob-

lem, which has been studied by a number of researchers [6–8].

Among the algorithms presented in this area, the Expectation-

Maximization (EM) algorithm is computationally simple and

compatible with the state space model. While the algorithms pre-

sented in [7] only works for linear state space model, we propose

a modified algorithm that can deal with the specific non-linear

problem in this paper.

This paper begins with the introduction of a standard robot

dynamic model and parameterizing the sensor frame location

using the Denavit-Hartenberg parameters [9]. Then, a stochas-

tic model is designed to parameterize the model uncertainties in

terms of the statistics in a Gaussian distribution. Once the model

is established, the EM algorithm is applied to accomplish the

state estimation and parameter estimation simultaneously. The

extended Kalman filter, extended Kalman smoother, and Monte

Carlo integration [10] techniques are used to obtain the informa-

tion we needed in the EM algorithm. This paper also introduces

a dual-phase learning structure in which the unknown parame-

ters can be estimated systematically. The effectiveness of the

proposed load side sensor frame identification algorithm is vali-

dated by experimentation on a single joint robot test-bed.

SYSTEM

Multi-joint Indirect Drive Model

Consider an n-joint manipulator with elastic joints described

by [4]:

Ml (ql) q̈l +C (ql , q̇l) q̇l +G(ql)+Dl q̇l + fl(q̇l)

= KJ

(

N−1qm−ql

)

+DJ

(

N−1q̇m− q̇l

)

− JT (ql) fext

Mmq̈m +Dmq̇m + fm(q̇m)

= τm−N−1
(

KJ

(

N−1qm−ql

)

+DJ

(

N−1q̇m− q̇l

))

where fm(q̇m) and fl(q̇l) account for the motor side and load

side frictions respectively. The definitions of all the variables

and quantities are listed in the nomenclature.

We then introduce the decoupled model by defining the

nominal load side inertia matrix as follows:

Mn = diag(Ml,11(ql0), . . . ,Ml,nn(ql0))

where ql0 is the robot home position and Ml,ii is the (i, i)-th ele-

ment of the load side inertia matrix Ml . By separating the load

side inertia matrix Ml into the nominal inertia matrix Mn and the

coupling terms, we obtain:

Mnq̈l +Dl q̇l−dl (ql ,qm, q̇l , q̇m)

= KJ

(

N−1qm−ql

)

+DJ

(

N−1q̇m− q̇l

)

(1)

Mmq̈m +Dmq̇m−dm (q̇m)

= τm−N−1
(

KJ

(

N−1qm−ql

)

+DJ

(

N−1q̇m− q̇l

))

(2)

where all the variable are diagonal matrices or vectors. In (1)-

(2), we introduced fictitious disturbance torque vectors dm and

dl , which account for the coupling and nonlinear dynamics (e.g.,



off-diagonal terms in the load side inertia matrix, Coriolis and

centrifugal force, gravity, friction, etc.). More specifically, these

fictitious disturbances can be formulated as:

dl =
[

MnM−1
l (ql)− In

][

KJ

(

N−1qm−ql

)

+DJ

(

N−1q̇m− q̇l

)

−Dl q̇l ]−MnM−1
l (ql) [C (ql , q̇l) q̇l +G(ql)

+ fl(q̇l)+ JT (ql) fext

]

dm =− fm(q̇m)

where In is an n×n identity matrix.

Measurement Model

Consider a 3-axial accelerometer mounted on the n-th link

of a robot. We parameterize the sensor frame by using the

Denavit-Hartenberg (DH) parameters ξs = {rs,αs,ds,θs} (see [9]

for more details). We thus can express the corresponding three-

dimensional translational acceleration in the sensor frame {s} in

terms of DH parameters:

al =Rs
0(ql ;ξs)

(

J̄s(ql ;ξs)q̈l +
¯̇Js(ql , q̇l ;ξs)q̇l +g

)

,ha(ql , q̇l ;ξs) (3)

where g = [0,0,−9.8]T m/sec2 is the gravity vector and

Rs
0(ql ;ξs) is the rotation matrix describing the robot base frame

{0} relative to the sensor frame {s}. Note that since the ac-

celerometer captures only the translational acceleration, the Ja-

cobian matrix J̄s(ql ;ξs) ∈R
3×n and the differential Jacobian ma-

trix ¯̇Js(ql , q̇l ;ξs) ∈ R
3×n refer to the first three rows of the stan-

dard Jacobian matrices respectively.

Besides the accelerometer, the motor side encoder for each

joint is also assumed to be available. Thus, the measurement

model becomes:

[

qm,s

al,s

]

=

[

qm

ha(ql , q̇l ;ξs)

]

+

[

nm

na

]

where
[

nT
m,n

T
a

]T
are introduced to denote the measurement

noises in the sensor system.

State Space Representation

By selecting the state vector as xi = [qmi, q̇mi,qli, q̇li]
T

, the

system dynamics for the i-th joint (1)-(2) is formulated as:

ẋi(t) = Acixi(t)+Buciτmi(t)+Bdci

[

dmi(t)
dli(t)

]

(4)

where Aci ∈ R
4×4, Buci ∈ R

4×1, and Bdci ∈ R
4×2 are given by:

Aci =











0 1 0 0

− KJi

N2Mmi
−

Dmi+D ji/N2

Mmi

KJi
NMmi

D ji

NMmi

0 0 0 1
KJi

NMli

DJi
NMl

− KJi
Mmi

DJi+Dli
Mli











Buci =
[

0 1
Mmi

0 0
]T

Bdci =

[

0 1
Mmi

0 0

0 0 0 1
Mli

]T

where •i denotes the i-th (or the (i, i)-th) element of the corre-

sponding vector (matrix) •.

Then, by combining the dynamics for all joints, we ob-

tain the overall state vector x =
[

xT
1 , · · · ,x

T
n

]T
∈ R

4n, the in-

put vector u = [τm1, · · · ,τmn]
T ∈ R

n, and the disturbance vector

d = [dm1,dl1, · · · ,dmn,dln]
T ∈ R

2n. The corresponding system

matrices are given as:

Ac =











Ac1 0 · · · 0

0 Ac2 · · · 0
...

...
. . .

...

0 0 · · · Acn











Buc =











Buc1 0 · · · 0

0 Buc2 · · · 0
...

...
. . .

...

0 0 · · · Bucn











Bdc =











Bdc1 0 · · · 0

0 Bdc2 · · · 0
...

...
. . .

...

0 0 · · · Bdcn











With the system matrices {Ac,Buc,Bdc}, the zero-order-hold

(ZOH) equivalent model can be obtained as [11]:

x(k+1) = Adx(k)+Budu(k)+Bddd(k)+nw(k) (5)

where {Ad ,Bud ,Bdd} are the transition matrix, the input matrix,

and the disturbance matrix of the discrete-time model respec-

tively. The state vector x(k) is considered to be random. We

assume that the initial state vector has a Gaussian distribution

N (µ,Σ), while the process noise nw has independent and identi-

cally distributed (i.i.d.) Gaussian distribution N (0,Wd) at each

time step k.

On the other hand, the discrete-time measurement model can



be obtained by:

y(k) =

[

qm

ha(ql(k), q̇l(k);ξs)

]

+

[

nm(k)
na(k)

]

, h(x(k);ξs)+

[

nm(k)
na(k)

]

(6)

where y =
[

qT
m,s,a

T
l,s

]T

∈ R
n+3 is the output vector;

[

nT
m,n

T
a

]T
is

the measurement noise vector that is assumed to have i.i.d. zero-

mean Gaussian distribution with covariance Vd .

ALGORITHM

The measurement model in (6) shows that the translational

acceleration is a function of DH parameters and load side in-

formation. Therefore, if we can measure all quantities in the

model, i.e., ql,s, q̇l,s, the sensor frame identification problem can

be solved by:

min
ξs

L

∑
k=1

∥

∥al(k)−ha(ql,s(k), q̇l,s(k);ξs)
∥

∥

2

2
(7)

where L is the number of data samples.

However, in the case of robots with indirect drive mecha-

nisms, the load side joint space position and velocity are usually

not measured directly. Thus, the standard system identification

problem in (7) breaks down. Another algorithm is needed to ad-

dress this problem in the case of incomplete data.

Sensor Frame Identification

Given a batch of observations Y (L) = {y(1), . . . ,y(L)}, we

aim to maximize the likelihood of Y (L) in the stochastic model

(5)-(6). Such optimization problem is intractable since the state

vectors are random. In this case, we can apply the EM algorithm

to iteratively achieve the optimum.

Due to the stochastic property of the dynamic model, we

cannot compute the likelihood for the unknown parameter di-

rectly. Therefore, we first introduce the expected complete log

likelihood L (x,Y (L);ξs,η) , E {lc (x,Y (L);ξs,η|Y (L))}, where

the parameter η denotes the collection of the statistics {µ,Σ,Wd}
in the stochastic model. The expected complete log likelihood

corresponding to the proposed model (5)-(6) can be obtained in

the following form:

L (x,Y (L);ξs,η)

=−
1

2

∫
(x(1)−µ)T Σ−1(x(1)−µ)p(x|Y (L))dx(1)

−
1

2

L−1

∑
k=1

∫∫
x̃T (k+1)W−1

d x̃(k+1)p(x|Y (L))dx(k+1)dx(k)

−
1

2

L

∑
t=1

∫
ỹT (k)V−1

d ỹ(k)p(x|Y (L))dx(k)

−
1

2
logdet(Σ)−

L−1

2
logdet(Wd)−

L

2
logdet(Vd)+ c (8)

where x̃(k+1) = x(k+1)−Adx(k)−Budu(k)−Bddd(k), ỹ(k) =
y(k)− h(x(k);ξs), and c is a constant that accounts for the con-

stant coefficients in Gaussian distribution.

As shown in [6], maximizing the expected complete log like-

lihood with respect to the parameter is equivalent to maximizing

the lower bound of the log likelihood with respect to the parame-

ter. We thus deal with the optimization problem for the expected

likelihood:

ξs←argmax
ξs

L (x,Y (L);ξs,η)

where← denotes the assignment operator that resets the param-

eter in the left hand side by the value computed from the right

hand side. Note that the statistics η are assumed to be known at

this point. Since (8) is a function with deterministic quantities,

we can apply gradient ascent method to yield the optimum. The

parameter can be updated as follows:

ξs← ξs +λ∇ξs
L (x,Y (L);ξs,η) (9)

where the i-th component of the gradient ∇ξs
L (x,Y (L);ξs,η)can

be obtained in the following form:

∂L

∂ξsi

=
∂

∂ξsi

{

−
1

2

L

∑
k=1

E
{

ỹT (k)V−1
d ỹ(k)

∣

∣Y (L)
}

}

=−
1

2

L

∑
k=1

E

{

tr

(

2V−1
d ỹ(k)

∂ỹT (k)

∂ξsi

)∣

∣

∣

∣

Y (L)

}

(10)

Usually, it is hard to find the closed form for the expected value

of the nonlinear function in (10). The corresponding determinis-

tic function (i.e., without computing the expectation), however,

can often be obtained. We thus draw samples from the stochas-

tic model and approximate the expected value of ỹ(k) by Monte

Carlo integration. Applying Monte Carlo integration to (10)



yields:

∂L

∂ξsi

=−
L

∑
k=1

tr

(

V−1
d E

{

ỹ(k)
∂ỹT (k)

∂ξsi

∣

∣

∣

∣

Y (L)

})

≈
1

M

M

∑
i=1

L

∑
k=1

tr

(

V−1
d

(

y(k)−h(xi(k);ξs)
) ∂hT (xi(k);ξs)

∂ξsi

)

(11)

where M is the number of samples for each random vec-

tor x(k), xi(k) is the i-th sample drawn from i.i.d Gaussian

N (x̂s(k),S(k)), x̂s(k) = E {x(k)|Y (L)} is the state estimate, and

S(k) = E
{

(x(k)− x̂s(k))(x(k)− x̂s(k))T |Y (L)
}

is the covari-

ance of state estimation error. The computation of
∂hT (xi(k);ξs)

∂ξsi

can be completed by a closed form derivation. The computation

of x̂s(k) and S(k) will be introduced in the following section.

Load Side State Estimation

To complete the EM iteration, we need to estimate the state

vector and its corresponding error covariance. More specifically,

each time after we update the parameter by (9), the state vec-

tor and its distribution need to be re-estimated for computing the

Monte Carlo integration in (11) for the next step. It is important

to note that the expectation of the system states are evaluated

with respect to the distribution p(x|Y (L)) with the current esti-

mated parameter ξs.

To do this, we apply the extended Kalman filtering (EKF)

and extended Kalman smoothing (EKS) techniques using the

stochastic model. The extended Kalman filter is given by:

x̂o(k) = Ad x̂(k−1)−Budu(k−1)−Bdd d̂(k−1) (12)

M(k) = AdZ(k−1)AT
d +Wd (13)

K(k) = M(k)CT
d (k)

(

Cd(k)M(k)CT
d (k)+Vd

)−1
(14)

Z(k) = (I−K(k)Cd(k))M(k) (15)

x̂(k) = x̂o(k)+K(k)(y(k)−h(x̂o(k);ξs)) (16)

where x̂o(k) = E {x(k)|Y (k−1)} and x̂(k) = E {x(k)|Y (k)} are

the a-priori and the a-posteriori state estimate respectively;

M(k) =E
{

(x(k)− x̂o(k))(x(k)− x̂o(k))T |Y (k−1)
}

and Z(k) =

E
{

(x(k)− x̂(k))(x(k)− x̂(k))T |Y (k)
}

are the covariance of the

a-priori and the a-posteriori state estimation error respectively;

d̂(k) is the disturbance term approximated by x̂(k); Cd(k) =
∇h(x;ξs)|x=x̂o(k) is the linear approximation of h(x(k);ξs) de-

fined in the following way:

h(x(k);ξs)≈h(x̂o(k);ξs)+∇h(x;ξs)|x=x̂o(k)(x(k)− x̂o(k))

,h(x̂o(k);ξs)+Cd(k)(x(k)− x̂o(k))

where Cd(k) can be computed by a closed form derivation for

the simple case or be approximated by the first order numerical

differentiation.

Then, applying the extended Kalman smoother yields

J(k) = Z(k)AT
d (k)M

−1(k) (17)

S(k) = Z(k)+ J(k)(S(k+1)−M(k+1))JT (k) (18)

x̂s(k) = x̂(k)+ J(k)(x̂s(k+1)− x̂o(k+1)) (19)

where x̂s(k) = E {x(k)|Y (L)} is the state estimate after smooth-

ing; S(k) = E
{

(x(k)− x̂s(k))(x(k)− x̂s(k))T |Y (L)
}

is the co-

variance of state estimation error after smoothing.

By collecting the estimation result in (18)-(19) for k =
1, . . . ,L, we can continue to update the model parameters ξs us-

ing the update law in (9) and the Monte Carlo integration in (11).

The algorithm is running iteratively until the model parameters

converge.

Furthermore, it is seen that (12)-(16) is identical to the stan-

dard extended Kalman filter, which can be implemented as a state

observer for real-time feedback control. Therefore, the state esti-

mation problem and the system identification problem are solved

simultaneously by the proposed algorithm.

Tuning of the Statistics in Stochastic Model

It is important to note that the effectiveness of the EKF/EKS

techniques relies on the a-priori knowledge of the stochastic

model. In practice, the measurement noise covariance matrix

Vd can often be obtained experimentally. The process noise Wd ,

however, is often not available since it accounts for the nonlinear

dynamic model uncertainty. We thus apply a similar parame-

ter learning technique (i.e., the EM algorithm) to estimate these

noise covariances.

In this case, we assume that the sensor frame parameter ξs

is known and we try to deal with the optimization problem:

η←argmax
η
L (x,Y (L);ξs,η) (20)

The argument of the maximization problem can be found by:

µ←x̂s(1) (21)

Σ←S(1) (22)

Wd ←
1

L−1

L−1

∑
k=1

E
{

x̃(k+1)x̃T (k+1)
∣

∣Y (L)
}

(23)

where x̃(k) is defined in (8).

Again, since the fictitious disturbance term d(k) in x̃(k) is a

nonlinear function of x(k), we use Monte Carlo integration to ap-

proximate the expected value. As a result, the parameter update
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law is found as follows:

Wd ≈
1

M(L−1)

M

∑
i=1

L−1

∑
k=1

x̃i(k+1)x̃iT (k+1) (24)

where M is the number of sample and x̃i(k) is the i-th sample

of the random vector x̃(k) drawn from i.i.d Gaussian distribution

of x(k)∼ N (x̂s(k),S(k)) based on the observations of the whole

time series.

Dual-Phase Learning Structure
Figure 1 shows the dual-phase learning structure for the au-

tomatic sensor frame identification problem, where the sensor

frame parameters ξs and the statistics of the stochastic model η
are both unknown. This problem is formulated into two parts.

Namely, we first identify the statistics in the stochastic model us-

ing the measurement from a well-calibrated sensor frame (i.e.,

the training phase), and then we estimate the parameter of the

new un-calibrated sensor frame (i.e., the testing phase).

The first part is referred to as the training phase, in which

we try to find a stochastic model that best fits the measurements

and the system dynamics. In this phase, the data is obtained by

a well-calibrated sensor (i.e., the parameter of the sensor frame

is known) so that the assumption in (20) is satisfied. Thus, (21)-

(24) can be computed and the estimate of η is obtained.

We then utilize the stochastic model obtained from the train-

ing phase to estimate the unknown sensor frame. Since the statis-

tics of the stochastic model has been computed, we can run the
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Figure 2: SINGLE JOINT ROBOT TEST-BED.

parameter update law (9)-(11) considering η as known quanti-

ties.

Note that, the training phase is normally required to perform

only once and the resulting estimate of η should be good for

the testing phase for any unknown sensor frame. This learning

structure, however, may not be appropriate in the case where the

calibrated sensor frame in the training phase is far away from the

unknown sensor frame. Since the stochastic model is trained at a

specific sensor frame, it may not be able to represent the system

dynamics globally. In the following experimental study, how-

ever, we will show that the proposed algorithm is robust against

the unknown sensor frame at various locations which are not

close to the calibrated sensor frame in the training phase.

EXPERIMENTAL STUDY

System Setup

The proposed algorithm is implemented to identify an ac-

celerometer frame on a single-joint robot test-bed as shown

in Fig. 2. The system is equipped with a motor side 20,000

counts/revolution encoder, a load side 144,000 counts/revolution

encoder, and two accelerometers (Kistler, Type: 8330A3) which

are mounted at the ends of the payload symmetrically. Among

these sensors, the motor side encoder and one of the accelerom-

eters (i.e., al,s in Fig. 2) are assumed to be available for the en-

tire algorithm, where the other accelerometer (i.e., aref in Fig. 2)

is utilized for the training phase only. The load side encoder

is utilized for performance validation. The DH parameters of

the accelerometers’ locations are listed in Tab.1. A basic con-

troller used in this single-joint system is a PID controller with

state feedback. The control law is implemented in a LabVIEW



Table 1: DENAVIT-HARTENBERG PARAMETERS OF THE

SENSOR FRAME IN THE SINGLE JOINT SYSTEM.

rs (mm) αs (rad) ds (mm) θs (rad)

al,s R = 600 π/2 0 ql

aref R = 600 π/2 0 ql +π

real-time target installed with LabVIEW Real-Time and FPGA

modules. The sampling rate of data acquisition and controller is

1 kHz.

Sensor Frame Identification

In this experiment, the single-joint system is designed to

track a load side trajectory ql,r = sin(0.5πt + 0.5π) rad. The

tracking performance, however, is not of interest since the main

objective is to test the capability of the algorithm for identifying

an unknown sensor frame. Note that the DH parameter ds (i.e.,

the offset between {s} and {o} along Zo) cannot be identified in

this setup, since the measurements of the accelerometer do not

change when we move the sensor frame {s} from one location

to another along Zo direction. In this work, we assume that rs

is the only unknown parameter since the orientation (i.e., αs and

θs) can be computed directly using the gravity effect.

Figure 3 shows the monotonic convergence of the esti-

mated sensor frame location using the proposed algorithm. The

red dash line represents the true value of the DH parameter rs

whereas the solid blue line represents the estimate of the DH pa-

rameter r̂s in each iteration. In general, the accuracy and the vari-

ance of the estimation result depend significantly on the number

of the sample data M in Monte Carlo integration. Also, since

the Monte-Carlo integration is a randomized algorithm (i.e., the

result can be changed from one trial to another), we repeat the

above estimation process several times to show the robustness

of the algorithm for different random Monte-Carlo samples. Ta-

ble 2 shows the average error and the standard deviation of the

parameter estimation results for 15 trials using different values

of M. It shows that the standard deviation of the parameter esti-

mation is small. Also, it is clearly seen that the execution time

increases proportionally with M, which implies that the Monte

Carlo integration dominates the computation of this algorithm.

We also want to demonstrate the performance robustness of

the algorithm against the uncertainty induced by different sen-

sor frame locations. Note that two accelerometers are mounted

symmetrically and thus the load side angular acceleration can be

computed by q̈l,s =
al,s+aref

2R
, where R is the true value of rs. We

thus can generate a signal as follows that mimics the measure-

ment of a fictitious accelerometer mounted at a location with DH
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Figure 3: CONVERGING OF THE PARAMETER WHEN M =
15.

Table 2: PARAMETER ESTIMATION (THE LAST ITERA-

TION) RESULT FOR DIFFERENT NUMBERS OF SAMPLE

POINTS IN MONTE CARLO INTEGRATION.

Mean of

|R− R̂|
Standard

Deviation σ(R̂)
Execution

Time

M = 3 0.1667 mm 0.1834 mm 2.61 sec

M = 6 0.1460 mm 0.2099 mm 4.30 sec

M = 15 0.0935 mm 0.1237 mm 9.39 sec

M = 30 0.0803 mm 0.0797 mm 18.01 sec

parameter rs = R+∆R (for an arbitrary ∆R):

al,s(rs = R+∆R) = (R+∆R)q̈l,s +gcos(ql,s) (25)

= (R+∆R)
al,s +aref

2R
+gcos(ql,s) (26)

Here, since the gravity effect is nonlinear, the parameter estima-

tion error (Fig. 4) is expected to increase as ∆R becomes larger.

Applying the algorithm to these fictitious signals with M =
15 for 15 iterations, we can obtain the parameter estimation error

for different sensor frame locations as shown in Fig. 4. It is seen

that the algorithm achieves less than 1mm parameter estimation

error (i.e., mean of |R− R̂| for the last iteration) when we apply-

ing it to a sensor frame within ∆R =±75mm. This demonstrates

the performance robustness of the proposed algorithm when the
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actual sensor frame deviates from the calibrated sensor frame in

the training phase.

Load Side State Estimation

As mentioned, the proposed algorithm computes the state

estimates simultaneously with the system identification. Figure 5

shows that the estimated states using EKF are much better than

the estimated states using the motor side information (i.e., we

assume the joint is rigid and thus use
qm,s

N
as the load side posi-

tion estimate) only. Here, we evaluate the performance using the

true value from the load side encoder measurements. In fact, the

EKF estimate is even smoother than the load side encoder mea-

surements, which implies the velocity estimate by EKF would be

also much better than the direct differentiation of the load side

encoder measurements. The corresponding estimation errors are

shown in Fig. 6. It is seen that the root-mean-square (RMS) esti-

mation error of the proposed method is less than half of the one

using motor encoder.

Generalization to Multi-joint Robot

One way of generalization for multi-joint robot is to directly

follow the multi-joint robot dynamic model and algorithm de-

rived in this paper. However, the computational complexity is

greatly increased due to the model nonlinearities. To simplify the

problem, an ad-hoc way can be employed to decouple the prob-

lem. In fact, although the experimental validation is done in the

single-joint robot test-bed, this result may be representative for a

more general case of multi-joint robot. By comparing Fig. 7 to

Fig. 2, we can consider a multi-joint robot as a single-joint robot

by properly designing the trajectory and the robot posture. To

be precise, we select one of the robot joints to be actuated while
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MATION ERROR.

assuming the remaining fixed robot joints are rigid (e.g., by acti-

vating the brakes for these joints). Then, each DH parameter can

be identified separately by repeating the same experiment with

different end-effector postures.

CONCLUSION

This paper proposed an algorithm that automatically detects

an accelerometer’s sensor frame (position and orientation) us-

ing the measurements from this accelerometer and the motor en-

coder. A stochastic model was formulated based on the knowl-



 

Xo 

Z
o
 

Y
o
 

Y
s
 

X
s
 

Z
s
 

Accelerometer 

only actuate 

the first joint 

Figure 7: A ROBOT POSTURE FOR SENSOR FRAME IDEN-

TIFICATION IN MULTI-JOINT ROBOT.

edge of the robot dynamics and the measurement model. The

closed form of the parameter update law was derived using the

Expectation Maximization algorithm with the modification for

the nonlinear model. Furthermore, the Monte Carlo integration

was utilized to approximate the parameter update law we ob-

tained in the Expectation Maximization algorithm. The effec-

tiveness of the algorithm was experimentally verified. It has been

shown that the proposed method is able to yield a good estimate

of the unknown sensor frame location even when the actual sen-

sor frame deviates from the calibrated sensor frame in the train-

ing phase. Although the experimental validation was done in a

single-joint robot test-bed only, the proposed algorithm is for-

mulated for a more general case of multi-joint robot. The exper-

imental validation on a multi-joint robot will be the immediate

future work.
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